Indian Statistical Institute Mid-Semestral Examination 2003-2004

M.Math. I Year II Semester

Date: 8.03.2004 Differential Geometry Marks: 40

- Show that an atlas for any compact manifold requires at least two charts. 3
- Define $F: M(n, \mathbb{R}) \to \mathbb{R}$ by F(A) = Determinant(A).
- Compute the derivative DF(A).
- Show that SO(n) is a regular submanifold of O(n).
- Compute dimension of SO(n). 5
- Find a nonconstant, smooth map between the manifolds $M = (R, u^3)$ and the usual space E = (R, u).
- Let $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, the unit sphere and $N = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ be the cylinder. Let $p \in M$ and p'be its orthogonal projection onto the Z-axis. Let the line joining p and p'intersect N at a point q. Show that the map $F: M \to N$ defined by F(p) = qdescribed above is a smooth map. 10
- 5. Let S^n be the unit sphere in \mathbb{R}^{n+1} . Fix an orthogonal matrix $A \in O(n+1)$ and define $F: S^n \to S^n$ by F(x) = Ax. Show that F is a diffeomorphism. 6
- 6. Show that the quotient map $G: S^n \to P^n(\mathbb{R}), G(x) := [x]$ is an immersion and a submersion, but not a diffeomorphism. 10
- 7. Find integral curves to the vector field $X: \mathbb{R}^2 \to \mathbb{R}^2, \ X(x,y) = (1,2x)$ 3